高效液相色谱法测定吲哚美辛缓释微球的含量

高 颖 吴艺君 金蓉蓉 陆丹红 温 俊 李文生

(1. 温州医学院附属眼视光医院 浙江 温州 325027; 2. 温州医学院药学院 浙江 温州 325027)

摘 要 建立吲哚美辛缓释微球中吲哚美辛含量的高效液相色谱方法。采用 Zorbax Eclipse XDB- C_{18} 色谱柱 (4.6 mm×150 mm 5 μ m) 以 pH 3.0 的 0.1 mol/L 冰醋酸溶液-乙腈(20:80) 为流动相 流速为 1.0 mL/min 柱温 为 30 $^{\circ}$ C 检测波长为 320 nm 进样量 20 μ L ,用外标法测得。吲哚美辛在 2.0 $^{\circ}$ 80.0 μ g/mL 范围内线性关系良好 (r=0.9999),平均回收率为 98.70%,RSD 为 1.50%。本方法灵敏度高 操作简单可靠。

关键词 高效液相色谱法; 吲哚美辛; 含量测定中图分类号 0657.7⁺2 文献标志码 A

文章编号 1005-8915(2012)02-0150-03

吲哚美辛是(Indomethacin) 非甾体类药物之一,直接抑制环氧化酶(Cox)活性,阻止前列腺素的合成和释放,对脂氧酶也有抑制作用,从而减少白三烯(LT)生成[1]。在临床上主要应用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎及强直性脊椎炎等,如今在眼科应用逐渐被重视,能维护血-眼屏障稳定性及抗炎作用,同时能够抑制血管内皮生长因子[2]。但是吲哚美辛在体内半衰期短,不能长期维持有效的治疗浓度,故缓释制剂的研制成为了热点[3]。国家食品药品监督管理局国家药品标准 WS-10001-(HD-1373)-2003 采用紫外分光光度法测吲哚美辛含量,但由于缓释载体是高分子材料,对吲哚美辛的含量测定产生干扰。本文参考文献[4] 采用高效液相色谱法测定吲哚美辛的含量,方法简便,准确,重复性好且高效。

1 仪器与试药

安捷伦 1200 系列高效液相色谱仪(美国,安捷伦公司),包括 G1322A 在线脱气机、G1311A 四元泵、G1315D 二极管阵列检测器、G1316A 柱温箱、G1329A 自动进样器,化学工作站(Agilent chemstation, Rev. B. 01. 03. [204]); Discovery DV 215 CD 电子分析天平(美国,奥豪斯公司); Christ Alpha 1-4/2-4 LD plus 冷冻干燥机(德国,Christ 公司); T10 型高剪切分散机(德国,IKA公司); RE-2000 旋转蒸发器(上海亚荣生化仪器厂); N4PLUS 粒度分析仪(美国贝克曼库特公司); 乙腈(德国 Merck 公司,色谱纯); 冰醋酸(国药集团化学试剂有限公司,分析纯); 超纯水

(Millipore 超纯水仪自制); PLGA(济南岱罡生物工程有限公司 批号 2010110311); Eudragit RS100(赢创罗姆药用树脂部 E070708187); 吲哚美辛原料药(中国药品生物制品检定所 100258-200904); PVA(Sigma 30000-70000 醇解度 81% ~90%); 二氯甲烷(西陇化工股份有限公司 分析称)。

2 方法

2.1 吲哚美辛微球的制备

采用 0/W 乳化溶剂挥发法制备微球 ,PLGA 和 Eudragit RS 按 1:3比例分别称重 62.5 mg 和 187.5 mg ,吲哚美辛按 照制得的微球总质量的 20% 和 30% 称量。将称得的 PLGA/Eudragit RS 和吲哚美辛溶解于 5mL 有机溶剂二氯甲烷中做为油相 在高剪切分散机(5档×10 min) 搅拌状态下将油相缓慢滴加入 2%的 PVA 水溶液 50 mL 中 将形成的乳液转移至旋转蒸发仪 在室温真空条件下蒸发 4 h ,挥干有机溶剂 得到的乳液离心洗涤 3 次 ,最后冷冻干燥。按此工艺在不同日期制备 3 批样品 ,理论载药量分别为 20% (1号-20100425)、30% (3号-20100525)。其中 ,理论载药量 = 吲哚美辛初始投入的质量 (mg) /微球总质量(mg)

2.2 激光粒度仪

取少量冻干粉末,分散在 150 mL 超纯水中,超声 $0.5 \sim 1 \text{ h}$ 使其充分分散。在室温下,利用激光粒度仪检测微球的平均粒径。样品的浓度维持在 5×10^{-4} counts/s,激光扫描角度 90° 。

^{*} 收稿日期: 2011-08-24 修回日期: 2011-12-05

基金项目: 1. 浙江省大学生科技创新活动计划(新苗人才计划)资助项目(No. 2010R413051); 2. 浙江省医药卫生科学研究基金资助项目(No. 2009A138); 3. 温州市科技局面上项目资助(No. Y20090014); 4. 温州医学院本专科学生科研立项资助课题(No. wyx201001007)。

作者简介: 高颖 女 在读硕士 电话: 13695895875 E-mail: gaoying. 1987517@163. com。

^{*} 通讯作者: 温俊 女 副教授 E-mail: terwj2004@ yahoo. com. cn。

2.3 色谱条件及系统适应性试验

色谱柱: Zorbax Eclipse XDB-C18 色谱柱($4.6~\text{mm} \times 150~\text{mm} 5~\mu\text{m}$); 流动相: 0.1~mol/L 冰醋酸溶液-乙腈(20:80); 检测波长: 320~nm; 柱温: 30~C; 流速: 1.0~mL/min; 进样量 $20~\mu\text{L}$ 。在此色谱条件下 ,吲哚美辛的出峰时间为 2.250~min 理论塔板数为 4.569。

3 结果

3.1 微球粒径

以 PLGA 和 Eudragit RS 100 为载体材料的载药微球, 其平均粒径为(2 588.3 ± 1 202.2) nm, 见图 1。

Unimodal results summary

Angte		Std. Dev (nm)	Baseline Error	PJ.	Countsis	Diff. Coer (m/s)	Overflow
90.00	2 588.3	1 202.2	104.60%	0.787	4.40e +04	1.66E-13	47 612

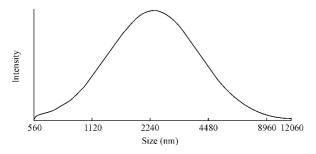


Fig 1 Particle size distributions of indomethacin PLGA/Eudragit RS 100 microspheres

3.2 对照品溶液制备

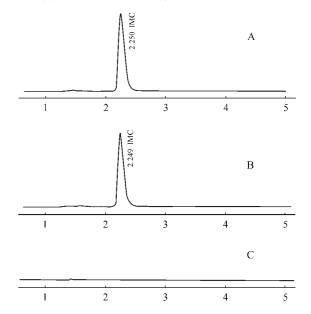
精密称取吲哚美辛对照品 4 mg ,置入加入 10 mL 容量 瓶中 加入流动相溶液定容 ,超声溶解 0.5 h(功率 100% ,温度 20 $^{\circ}$ C) 再经过 0.22 μ m 有机微孔滤膜过滤 ,做为对照品储存液。得到 400 μ g/mL 的吲哚美辛对照品溶液。

3.3 阴性对照品溶液制备

精密称取 4 mg 空白微球(根据吲哚美辛微球投料比 20%) 置入加入 10 mL 容量瓶中 加入流动相溶液定容 超声溶解 0.5 h(功率 100% 温度 20 °C)。再经过 0.22 μ m 有机微孔滤膜过滤 作为阴性对照品储存液。

3.4 供试品溶液的制备

精密称取吲哚美辛微球 5 mg ,置 10 mL 容量瓶中加流 动相定容 超声溶解 0.5 h(功率 100% ,温度 20 °C)。再经过 0.22 μ m 有机微孔滤膜过滤,即得供试品溶液。


3.5 专属性考察

分别精密量取上述处理后得到的对照品溶液、供试品溶液和阴性对照品溶液各 $20~\mu$ L 注入高效液相色谱仪,记录色谱图谱。见图 2。

3.6 标准曲线绘制

吸取 $400~\mu g/mL$ 上述对照品溶液分别进行梯度稀释至 $80~40~20~10~5~2~\mu g/mL$ 。按上述色谱条件和测定方法各

进样 20 μL 进行测定。结果表明: 在 2.0 ~ 80.0 $\mu g/mL$ 的 浓度范围内线性关系呈良好线性。

Reference substance indomethacin (A); Sample from indomethacin-microspheres (B); Negative sample from bland microspheres without indomethacin(C)

Fig 2 The chromatograms of HPLC detective method

3.7 重复性试验

精密称取一定量同一批次的供试品 6 份 ,按照上述制备供试品方法制备供试品溶液 ,每份样品进样 1 次 ,吲哚美辛峰面积的 RSD 为 0.92% ,说明使用该法重复性良好。

3.8 精密度试验

取对照品溶液 ,按上述色谱条件和测定方法,连续 6 次进样测定,测定各组分的峰面积。吲哚美辛 RSD 为 0.36%。

3.9 稳定性试验

3.10 回收率试验

按处方的比例配置低、中、高 3 种不同浓度的供试品,精密称取一定量的吲哚美辛对照品及辅料,每个浓度 3 份。放置于尖底试管中,用流动相溶解漩涡 2 min,经 $0.22~\mu m$ 有机微孔滤膜过滤,再用流动相把样品稀释到一定浓度。进样 $20~\mu L$ 。吲哚美辛的平均回收率为 98.7%,RSD 为 1.50%。见表 1。

3.11 样品测定

精密称取吲哚美辛对照品及自制吲哚美辛缓释微球 3 个批次样品。每个批次精密称取 3 份。按上述方法 进行梯度稀释至 20 μ g/mL 用各峰面积的外标法计算各批中吲哚美辛的含量 ,结果为 1 号-20100425 实测载药量为 (18.79 ± 1.00) % 2 号-20100425 实测载药量为(29.48 ± 2.12) % 3 号-20100525 实测载药量为(28.49 ± 1.48) %。

Tab 1	Recovery	rate	of	the	HPLC	method (n =	9)	١

Concentration of the standard samples(µg/mL)	Real concentration of the standard samples(µg/mL)	Recovery rate (%)	Mean recovery rate (%)	RSD (%)
15	15. 041	100. 27		
	15. 052	100. 35		
	15. 043	100. 29		
19	18. 405	96. 87		
	18. 415	96. 92	98. 70	1.50
	18. 418	96. 94		
22	21. 768	98. 95		
	21. 765	98. 93		
	21. 734	98. 79		

4 讨论

本品采用光电二极管阵列检测器 进行紫外扫描 ,吲哚美辛在 228 nm 和 320 nm 波长处有最大吸收峰 ,但在 320 nm 波长能在较短时间内达到良好基线 ,对于峰面积的准确积分提供必要条件 ,故选用 320 nm 波长作为检查波长。

随着流动相中乙腈的浓度的增加 ,吲哚美辛的保留时间明显提前。在理论塔板数符合正常检查要求下 ,选用了不干扰吲哚美辛出峰效果的最短出峰时间 ,故将流动相比例定为 0.1 mol/L⁻¹ 冰醋酸溶液-乙腈(20:80)。

在样品测定时 2 号样品的 RSD 值大于 2% 由于本样品是自制吲哚美辛缓释微球 将药物包裹在两组混合材料中,粒径在 $3~\mu m$ 左右 首次尝试应用于眼科疾病治疗。分布在微球中的药物含量存在一定误差 .也是造成 RSD 大于 2% 的原因之一。国家食品药品监督管理局(SFDA) 国家药品标WS-10001-(HD-1373) -2003 中提到采用乙醇萃取吲哚美辛,

并用紫外分光光度法测吲哚美辛乳膏中吲哚美辛的含量。由于本研究的对象是吲哚美辛 PLGA/Eudragit RS 100 缓释 微球 吲哚美辛略溶于乙醇 高分子材料不能完全溶解于乙醇中,使用乙醇萃取的方法不能完全萃取出包裹在微球内部的吲哚美辛,从而影响测量的准确度。本实验所采用的HPLC 的方法专属性强,灵敏度高,并且可消除辅料的影响,有利于缓释制剂中药物含量的真实测定。

参考文献

- [1] 杜军辉,王雨生,李蓉. 眼局部应用非甾体类抗炎药的研究进展[J]. 临床眼科杂志 2009, 17(3):284.
- [2] Wang HM ,Zhang GY. Indomethacin suppresses growth of colon cancer via inhibition of angiogenesis in vivo [J]. World J Gastroenterol. 2005, 11(3): 340.
- [3] Heller J. Ocular delivery using poly(ortho esters) [J]. Adv Drug Deliv Rev. 2005 57(14): 2053.
- [4] 张晓璐 戴夕娣,丁建.高效液相色谱法测定复方吲哚美辛乳膏中吲哚美辛的含量[J].药物分析杂志 2007 **27**(8):1269.

HPLC Determination of Indomethacin Content in Indomethacin Microspheres

GAO Ying¹ ,WU Yi-jun¹ ,JING Rong-rong² ,LU Dan-hong² ,WEN Jun^{2*} ,LI Wen-sheng¹ (1. Eye Hospital ,School of Ophthalmology and Optometry ,Wenzhou Medical College ,Wenzhou 325027 ,China; 2. School of Pharmacy ,Wenzhou Medical College , Wenzhou 325027 ,China)

Abstract Indomethacin microspheres were prepared by O/W solvent evaporation using PLGA and Eudragit RS 100 ,the mean diameters were 2 588.3 \pm 1 202.2 nm. A HPLC method for determiny indomethacin content in indomethacin microspheres was established. ZORBAX Eclipse XDB-C₁₈ column (4.6 mm × 150 mm 5 μ m) was used with mobile phase consisting of 0.1 mol/L glacial acetic acid (adjusted pH value to 3.0) –acetonitrile (20:80) and with a total flow rate of 1.0 mL/min. The column temperature was 30 °C. The UV detection wavelength was 320 nm ,with injection amount 20 μ L. The indomethacin curve was linear in the rangs of 2.0 ~ 80.0 μ g/mL and the regression equation was Area = 11.642 × Amt + 0.762 r = 0.999 9. The average recovery of indomethacin was 98.70% ,and the RSD was 1.50%. The method appeared to be highly sensitive ,accurate and simple. It can be used to determine indomethacin content in indomethacin microspheres.

Key words HPLC Indomethacin Assay